GOAP Execution Plan: AI Agent Enhancement v2
Meta Information
- Swarm ID: swarm_1764655531178_udtox74dx
- Methodology: GOAP + SPARC
- Generated: 2025-12-01
- Planner: Goal-Oriented Action Planning Specialist
1. STATE SPACE ANALYSIS
Current World State (T₀)
has_basic_agent: true
has_memory_system: true
has_ruvector_modules: true
has_task_planner: false
has_change_preview: false
has_ruvector_integration: false
has_site_context: false
has_approval_workflow: false
agent_handles_complex_nlp: false
user_sees_plan_before_execution: false
can_classify_intents: false
can_generate_actions: false
can_generate_diffs: false
can_format_previews: false
can_search_semantically: false
can_query_graph: false
can_get_recommendations: false
knows_site_structure: false
knows_content_schemas: false
has_workflow_states: false
all_modules_tested: false
documentation_complete: false
Goal World State (T_final)
has_basic_agent: true
has_memory_system: true
has_ruvector_modules: true
has_task_planner: true
has_change_preview: true
has_ruvector_integration: true
has_site_context: true
has_approval_workflow: true
agent_handles_complex_nlp: true
user_sees_plan_before_execution: true
all_modules_tested: true
documentation_complete: true
2. ACTION DEPENDENCY GRAPH
LAYER 0 (Foundational - No Dependencies)
├── create_task_planner [Cost: 5]
├── create_change_preview [Cost: 4]
├── create_ruvector_bridge [Cost: 4]
└── create_site_context [Cost: 4]
LAYER 1 (Depends on Layer 0)
├── create_intent_classifier [Cost: 3] → depends: create_task_planner
├── create_diff_generator [Cost: 2] → depends: create_change_preview
├── integrate_search [Cost: 2] → depends: create_ruvector_bridge
├── integrate_graph [Cost: 2] → depends: create_ruvector_bridge
└── analyze_site_structure [Cost: 2] → depends: create_site_context
LAYER 2 (Depends on Layer 1)
├── create_action_generator [Cost: 3] → depends: create_intent_classifier
├── create_preview_formatter [Cost: 2] → depends: create_diff_generator
├── integrate_recommendations [Cost: 2] → depends: integrate_search
└── create_schema_detector [Cost: 2] → depends: analyze_site_structure
LAYER 3 (Convergence)
└── create_approval_workflow [Cost: 4]
→ depends: create_task_planner, create_change_preview
LAYER 4 (State Machine)
└── create_state_machine [Cost: 2]
→ depends: create_approval_workflow
LAYER 5 (Integration)
└── integrate_all_modules [Cost: 4]
→ depends: all Layer 0-4 complete
LAYER 6 (Testing - Parallel)
├── test_task_planner [Cost: 2]
├── test_change_preview [Cost: 2]
├── test_ruvector_bridge [Cost: 2]
├── test_site_context [Cost: 2]
└── test_approval_workflow [Cost: 2]
LAYER 7 (Documentation)
└── write_documentation [Cost: 2]
→ depends: all tests pass
Total Actions: 24 Critical Path Length: 8 layers Maximum Parallelism: 4 actions (Layer 0)
3. OPTIMAL EXECUTION SEQUENCE (A* RESULT)
Heuristic Function
h(state) = Σ(unsatisfied_goals) × minimum_remaining_cost
Cost(path) = g(n) + h(n)
Optimal Path (Total Cost: 55)
Phase 1: Foundation (Cost: 17, Time: ~28h)
Execute in Parallel:
├─ A1: create_task_planner [Cost: 5, 7h SPARC]
├─ A2: create_change_preview [Cost: 4, 5h SPARC]
├─ A3: create_ruvector_bridge [Cost: 4, 5h SPARC]
└─ A4: create_site_context [Cost: 4, 5h SPARC]
State After Phase 1:
has_task_planner: true
has_change_preview: true
has_ruvector_integration: true (partial)
has_site_context: true
Phase 2: Specialization (Cost: 11, Time: ~16h)
Execute in Parallel:
├─ A5: create_intent_classifier [Cost: 3, 4h]
├─ A6: create_diff_generator [Cost: 2, 3h]
├─ A7: integrate_search [Cost: 2, 3h]
├─ A8: integrate_graph [Cost: 2, 3h]
└─ A9: analyze_site_structure [Cost: 2, 3h]
State After Phase 2:
can_classify_intents: true
can_generate_diffs: true
can_search_semantically: true
can_query_graph: true
knows_site_structure: true
Phase 3: Advanced Features (Cost: 9, Time: ~12h)
Execute in Parallel:
├─ A10: create_action_generator [Cost: 3, 4h]
├─ A11: create_preview_formatter [Cost: 2, 3h]
├─ A12: integrate_recommendations [Cost: 2, 3h]
└─ A13: create_schema_detector [Cost: 2, 2h]
State After Phase 3:
can_generate_actions: true
can_format_previews: true
can_get_recommendations: true
knows_content_schemas: true
Phase 4: Workflow Integration (Cost: 6, Time: ~9h)
Execute Sequentially:
A14: create_approval_workflow [Cost: 4, 5h SPARC]
└─> A15: create_state_machine [Cost: 2, 4h]
State After Phase 4:
has_approval_workflow: true
has_workflow_states: true
Phase 5: System Integration (Cost: 4, Time: ~6h)
Execute:
A16: integrate_all_modules [Cost: 4, 6h]
State After Phase 5:
agent_handles_complex_nlp: true
user_sees_plan_before_execution: true
Phase 6: Quality Assurance (Cost: 10, Time: ~15h)
Execute in Parallel:
├─ A17: test_task_planner [Cost: 2, 3h]
├─ A18: test_change_preview [Cost: 2, 3h]
├─ A19: test_ruvector_bridge [Cost: 2, 3h]
├─ A20: test_site_context [Cost: 2, 3h]
└─ A21: test_approval_workflow [Cost: 2, 3h]
State After Phase 6:
all_modules_tested: true
Phase 7: Documentation (Cost: 2, Time: ~3h)
Execute:
A22: write_documentation [Cost: 2, 3h]
Final State: GOAL ACHIEVED ✓
4. SPARC PHASE BREAKDOWN
Major Modules (SPARC Applied)
Task Planner (7h)
S: Specification (2h)
- Define intent taxonomy (ADD, UPDATE, DELETE, SEARCH, QUERY, ANALYZE)
- Design action generation pipeline
- Specify dependency resolution
P: Pseudocode (1h)
- Intent classifier algorithm
- Action sequencer logic
- Dependency graph builder
A: Architecture (1h)
- Module structure: IntentClassifier, ActionGenerator, DependencyResolver
- Integration points with memory system
- Event emission patterns
R: Refinement (2h - TDD)
- Test: "classify user intent from NLP input"
- Test: "generate ordered action sequence"
- Test: "resolve action dependencies"
- Implement until green
C: Completion (1h)
- Integration with existing agent
- Error handling
- Logging and observability
Change Preview (5h)
S: Specification (1h)
- Define diff generation strategies
- Design preview formatting
- Specify approval mechanism
P: Pseudocode (1h)
- File diff algorithm
- Syntax-aware formatting
- Preview renderer
A: Architecture (1h)
- DiffGenerator, PreviewFormatter, ApprovalHandler
- Integration with file system
R: Refinement (1h - TDD)
- Test: "generate accurate file diffs"
- Test: "format diffs for readability"
- Test: "handle approval workflow"
C: Completion (1h)
- CLI integration
- User feedback mechanisms
Ruvector Bridge (5h)
S: Specification (1h)
- Define bridge API surface
- Design semantic search integration
- Specify graph query patterns
P: Pseudocode (1h)
- Bridge initialization
- Search adapter
- Graph adapter
- Recommendation engine
A: Architecture (1h)
- RuvectorBridge class
- Adapter pattern for each module
- Result normalization
R: Refinement (1h - TDD)
- Test: "semantic search returns relevant results"
- Test: "graph queries resolve relationships"
- Test: "recommendations are contextual"
C: Completion (1h)
- Performance optimization
- Caching layer
Site Context (5h)
S: Specification (1h)
- Define site structure analysis
- Design schema detection
- Specify context caching
P: Pseudocode (1h)
- Site crawler
- Schema detector
- Context builder
A: Architecture (1h)
- SiteAnalyzer, SchemaDetector, ContextCache
- File system integration
R: Refinement (1h - TDD)
- Test: "detect site structure correctly"
- Test: "identify content schemas"
- Test: "cache context efficiently"
C: Completion (1h)
- Incremental updates
- Change detection
Approval Workflow (5h)
S: Specification (1h)
- Define workflow states: DRAFT, PREVIEW, APPROVED, REJECTED, EXECUTING, COMPLETE
- Design state transition rules
- Specify rollback mechanisms
P: Pseudocode (1h)
- State machine implementation
- Transition validator
- Event emitter
A: Architecture (1h)
- WorkflowStateMachine class
- Event-driven architecture
- State persistence
R: Refinement (1h - TDD)
- Test: "valid state transitions succeed"
- Test: "invalid transitions are rejected"
- Test: "rollback restores previous state"
C: Completion (1h)
- Audit logging
- Notification system
5. PARALLEL EXECUTION PLAN
Concurrency Matrix
| Phase | Max Parallel | Actions | Wall Time |
|---|---|---|---|
| 1 | 4 | A1-A4 | ~7h |
| 2 | 5 | A5-A9 | ~4h |
| 3 | 4 | A10-A13 | ~4h |
| 4 | 1 | A14-A15 | ~9h |
| 5 | 1 | A16 | ~6h |
| 6 | 5 | A17-A21 | ~3h |
| 7 | 1 | A22 | ~3h |
Total Sequential Time: 94 hours Total Parallel Time: ~36 hours Speedup: 2.6x
Agent Assignment Strategy
Phase 1 (4 agents in parallel):
Agent-1 (researcher) → create_task_planner
Agent-2 (coder) → create_change_preview
Agent-3 (coder) → create_ruvector_bridge
Agent-4 (code-analyzer) → create_site_context
Phase 2 (5 agents in parallel):
Agent-1 (researcher) → create_intent_classifier
Agent-2 (coder) → create_diff_generator
Agent-3 (coder) → integrate_search
Agent-4 (coder) → integrate_graph
Agent-5 (code-analyzer) → analyze_site_structure
Phase 3 (4 agents in parallel):
Agent-1 (coder) → create_action_generator
Agent-2 (coder) → create_preview_formatter
Agent-3 (coder) → integrate_recommendations
Agent-4 (code-analyzer) → create_schema_detector
Phase 4 (1 agent sequential):
Agent-1 (system-architect) → create_approval_workflow
Agent-1 (system-architect) → create_state_machine
Phase 5 (1 agent):
Agent-1 (system-architect) → integrate_all_modules
Phase 6 (5 agents in parallel):
Agent-1 (tester) → test_task_planner
Agent-2 (tester) → test_change_preview
Agent-3 (tester) → test_ruvector_bridge
Agent-4 (tester) → test_site_context
Agent-5 (tester) → test_approval_workflow
Phase 7 (1 agent):
Agent-1 (api-docs) → write_documentation
6. MILESTONES & ACCEPTANCE CRITERIA
Milestone 1: Foundation Complete (Day 1)
Criteria:
- ✓ Task planner module exists with intent classification
- ✓ Change preview generates file diffs
- ✓ Ruvector bridge connects to all modules
- ✓ Site context analyzes project structure
- ✓ All modules have basic tests (>70% coverage)
Deliverables:
task-planner.jschange-preview.jsruvector-bridge.jssite-context.js
Milestone 2: Specialization Complete (Day 2)
Criteria:
- ✓ Intent classifier achieves >85% accuracy on test intents
- ✓ Diff generator handles all file types
- ✓ Semantic search returns relevant results
- ✓ Graph queries resolve page relationships
- ✓ Site structure analysis identifies all pages/components
Deliverables:
- Intent taxonomy document
- Diff examples for all file types
- Search result quality metrics
Milestone 3: Advanced Features Complete (Day 3)
Criteria:
- ✓ Action generator produces valid action sequences
- ✓ Preview formatter outputs readable diffs
- ✓ Recommendations are contextually relevant
- ✓ Schema detector identifies content patterns
Deliverables:
- Action sequence examples
- Preview rendering samples
- Schema detection report
Milestone 4: Workflow Integration Complete (Day 4)
Criteria:
- ✓ Approval workflow implements all states
- ✓ State machine validates transitions
- ✓ Rollback mechanism tested
- ✓ Event system publishes workflow events
Deliverables:
- State diagram
- Workflow API documentation
- Event schema
Milestone 5: System Integration Complete (Day 5)
Criteria:
- ✓ All modules integrate seamlessly
- ✓ End-to-end user flows work
- ✓ Agent handles complex multi-step requests
- ✓ User sees preview before execution
Deliverables:
- Integration test suite
- User flow documentation
- Demo scenarios
Milestone 6: Quality Assurance Complete (Day 6)
Criteria:
- ✓ All module tests pass
- ✓ Integration tests pass
- ✓ Test coverage >80% overall
- ✓ Performance benchmarks meet targets
- ✓ Error handling validated
Deliverables:
- Test coverage report
- Performance benchmark results
- Error handling documentation
Milestone 7: Documentation Complete (Day 7)
Criteria:
- ✓ API documentation complete
- ✓ User guide written
- ✓ Architecture diagrams created
- ✓ Examples for all features
- ✓ Troubleshooting guide
Deliverables:
- API reference
- User guide
- Architecture documentation
- Example gallery
7. CRITICAL ALGORITHMS (Pseudocode)
Algorithm 1: Intent Classifier
function classifyIntent(naturalLanguageInput) {
// Tokenize and extract features
tokens = tokenize(input)
features = extractFeatures(tokens)
// Pattern matching against intent taxonomy
intentScores = {}
for (intent in INTENT_TAXONOMY) {
score = calculateSimilarity(features, intent.patterns)
intentScores[intent] = score
}
// Select best match with confidence threshold
bestIntent = argmax(intentScores)
confidence = intentScores[bestIntent]
if (confidence < CONFIDENCE_THRESHOLD) {
return { intent: 'CLARIFY', confidence: 0, suggestions: topK(intentScores, 3) }
}
// Extract entities (file names, content, selectors, etc.)
entities = extractEntities(tokens, bestIntent)
return {
intent: bestIntent,
confidence: confidence,
entities: entities
}
}
Algorithm 2: Action Generator
function generateActionSequence(intent, entities, siteContext) {
actions = []
switch (intent) {
case 'ADD_CONTENT':
// Check if page exists
if (!siteContext.pageExists(entities.page)) {
actions.push({ type: 'CREATE_PAGE', params: { page: entities.page } })
}
actions.push({ type: 'INSERT_CONTENT', params: entities })
actions.push({ type: 'UPDATE_INDEX', params: { page: entities.page } })
break
case 'UPDATE_STYLE':
// Search for existing styles
existingStyles = siteContext.findStyles(entities.selector)
if (existingStyles.length > 0) {
actions.push({ type: 'MODIFY_STYLE', params: { ...entities, existing: existingStyles } })
} else {
actions.push({ type: 'ADD_STYLE', params: entities })
}
break
case 'SEARCH_CONTENT':
// Use semantic search
actions.push({ type: 'SEMANTIC_SEARCH', params: { query: entities.query } })
actions.push({ type: 'PRESENT_RESULTS', params: {} })
break
}
// Resolve dependencies between actions
actions = resolveDependencies(actions)
// Estimate costs
for (action of actions) {
action.cost = estimateCost(action)
}
return actions
}
Algorithm 3: Change Preview Generator
function generateChangePreview(actions, currentState) {
previews = []
for (action of actions) {
preview = {
action: action,
before: null,
after: null,
diff: null
}
switch (action.type) {
case 'MODIFY_FILE':
preview.before = readFile(action.params.file)
preview.after = applyModification(preview.before, action.params.changes)
preview.diff = generateDiff(preview.before, preview.after)
break
case 'CREATE_FILE':
preview.before = null
preview.after = action.params.content
preview.diff = { type: 'CREATE', lines: preview.after.split('\n').length }
break
case 'DELETE_FILE':
preview.before = readFile(action.params.file)
preview.after = null
preview.diff = { type: 'DELETE', lines: preview.before.split('\n').length }
break
}
previews.push(preview)
}
return formatPreviews(previews)
}
function generateDiff(before, after) {
// Unified diff format
beforeLines = before.split('\n')
afterLines = after.split('\n')
lcs = longestCommonSubsequence(beforeLines, afterLines)
diff = []
i = 0, j = 0
for (line of lcs) {
// Add deletions
while (beforeLines[i] !== line) {
diff.push({ type: '-', line: beforeLines[i], lineNum: i + 1 })
i++
}
// Add additions
while (afterLines[j] !== line) {
diff.push({ type: '+', line: afterLines[j], lineNum: j + 1 })
j++
}
// Add unchanged
diff.push({ type: ' ', line: line, lineNum: i + 1 })
i++
j++
}
return diff
}
Algorithm 4: Approval Workflow State Machine
const STATES = ['DRAFT', 'PREVIEW', 'APPROVED', 'REJECTED', 'EXECUTING', 'COMPLETE', 'FAILED', 'ROLLED_BACK']
const TRANSITIONS = {
DRAFT: ['PREVIEW'],
PREVIEW: ['APPROVED', 'REJECTED', 'DRAFT'],
APPROVED: ['EXECUTING'],
REJECTED: ['DRAFT'],
EXECUTING: ['COMPLETE', 'FAILED'],
COMPLETE: [],
FAILED: ['ROLLED_BACK', 'DRAFT'],
ROLLED_BACK: ['DRAFT']
}
class WorkflowStateMachine {
constructor(workflowId) {
this.workflowId = workflowId
this.currentState = 'DRAFT'
this.history = [{ state: 'DRAFT', timestamp: Date.now() }]
this.snapshot = null
}
transition(targetState, reason = null) {
// Validate transition
if (!TRANSITIONS[this.currentState].includes(targetState)) {
throw new Error(`Invalid transition: ${this.currentState} -> ${targetState}`)
}
// Execute pre-transition hooks
this.executePreHooks(this.currentState, targetState)
// Take snapshot before critical states
if (targetState === 'EXECUTING') {
this.snapshot = this.takeSnapshot()
}
// Update state
const previousState = this.currentState
this.currentState = targetState
this.history.push({
state: targetState,
timestamp: Date.now(),
from: previousState,
reason: reason
})
// Execute post-transition hooks
this.executePostHooks(previousState, targetState)
// Emit event
this.emit('state-changed', {
workflow: this.workflowId,
from: previousState,
to: targetState,
reason: reason
})
}
rollback() {
if (!this.snapshot) {
throw new Error('No snapshot available for rollback')
}
restoreSnapshot(this.snapshot)
this.transition('ROLLED_BACK', 'Execution failed, snapshot restored')
}
}
Algorithm 5: Semantic Search Integration
function semanticSearch(query, context) {
// Vectorize query
queryVector = vectorizeText(query)
// Search using ruvector
results = ruvector.search({
vector: queryVector,
limit: 20,
threshold: 0.7
})
// Re-rank using context
scoredResults = []
for (result of results) {
contextScore = calculateContextRelevance(result, context)
finalScore = 0.6 * result.score + 0.4 * contextScore
scoredResults.push({ ...result, finalScore: finalScore })
}
// Sort and filter
rankedResults = scoredResults
.sort((a, b) => b.finalScore - a.finalScore)
.filter(r => r.finalScore > 0.6)
.slice(0, 10)
return rankedResults
}
function calculateContextRelevance(result, context) {
score = 0.0
// Boost if in same directory
if (result.file.startsWith(context.currentDir)) {
score += 0.3
}
// Boost if same file type
if (result.fileType === context.currentFileType) {
score += 0.2
}
// Boost if recently modified
daysSinceModified = (Date.now() - result.modified) / (1000 * 60 * 60 * 24)
if (daysSinceModified < 7) {
score += 0.3 * (1 - daysSinceModified / 7)
}
// Boost if in user's working set
if (context.workingSet.includes(result.file)) {
score += 0.4
}
return Math.min(score, 1.0)
}
8. RISK ANALYSIS & CONTINGENCIES
High-Risk Areas
Risk 1: Intent Classification Accuracy
Likelihood: Medium Impact: High Mitigation:
- Build comprehensive test dataset (100+ examples)
- Implement fallback to clarification flow
- Add user feedback loop for training
- Use few-shot learning with Claude API
Contingency:
- If accuracy <80%, pivot to rule-based classification
- Implement hybrid approach (rules + ML)
Risk 2: Ruvector Integration Complexity
Likelihood: Medium Impact: Medium Mitigation:
- Start with simple search, add features incrementally
- Mock ruvector responses for testing
- Design bridge with adapter pattern for easy swap
Contingency:
- If ruvector has issues, use basic text search initially
- Implement abstraction layer to swap search backends
Risk 3: Approval Workflow State Explosion
Likelihood: Low Impact: Medium Mitigation:
- Keep state machine simple (8 states max)
- Design clear transition rules
- Extensive state machine testing
Contingency:
- If states become unmanageable, simplify to: DRAFT, PENDING, APPROVED, EXECUTING, DONE
Risk 4: Performance Degradation
Likelihood: Medium Impact: Medium Mitigation:
- Implement caching at every layer
- Use lazy loading for site context
- Profile and optimize hot paths
Contingency:
- If performance issues arise, add dedicated optimization phase
- Implement async/streaming for large operations
Risk 5: Agent Coordination Failures
Likelihood: Low Impact: High Mitigation:
- Use Claude Flow hooks consistently
- Implement health checks
- Clear agent handoff protocols
Contingency:
- If coordination breaks, fall back to sequential execution
- Manual intervention points defined
9. RESOURCE ESTIMATES
Agent Hours by Phase
| Phase | Agent Type | Hours | Count | Total |
|---|---|---|---|---|
| 1 | Mixed | 7 | 4 | 28 |
| 2 | Mixed | 4 | 5 | 20 |
| 3 | Coder | 4 | 4 | 16 |
| 4 | Architect | 9 | 1 | 9 |
| 5 | Architect | 6 | 1 | 6 |
| 6 | Tester | 3 | 5 | 15 |
| 7 | Docs | 3 | 1 | 3 |
Total Agent Hours: 97 hours Wall Clock Time: ~36 hours (with parallelism) Calendar Time: ~5 business days
Token Estimates
| Operation | Tokens/Op | Count | Total |
|---|---|---|---|
| Intent Classification | 2,000 | 100 | 200K |
| Code Generation | 8,000 | 24 | 192K |
| Code Review | 5,000 | 24 | 120K |
| Test Generation | 4,000 | 24 | 96K |
| Documentation | 10,000 | 7 | 70K |
Total Estimated Tokens: ~680K tokens Cost (Sonnet 4.5): ~$2.04 input + $6.10 output = ~$8.14
10. SUCCESS METRICS
Quantitative Metrics
- Intent Classification Accuracy: >85%
- Test Coverage: >80%
- Response Time: <2s for intent classification, <5s for action generation
- Preview Generation: <1s per file
- Semantic Search Relevance: >0.7 average score
Qualitative Metrics
- User Satisfaction: Agent correctly interprets complex requests
- Code Quality: Modules follow established patterns
- Maintainability: Clear separation of concerns
- Documentation: Complete and understandable
Acceptance Criteria for Completion
- ✓ All 7 milestones achieved
- ✓ All tests passing (>80% coverage)
- ✓ Documentation complete
- ✓ Demo scenarios working end-to-end
- ✓ Performance benchmarks met
- ✓ User can issue complex multi-step requests
- ✓ Agent shows preview before execution
- ✓ Approval workflow handles all edge cases
11. EXECUTION CHECKLIST
Pre-Execution
- Swarm topology initialized (mesh, 6 agents)
- Agent roles assigned
- Memory namespaces created
- Session ID registered
- Backup of current agent code
Phase 1 Checklist
- Task planner module created
- Change preview module created
- Ruvector bridge module created
- Site context module created
- All Phase 1 tests passing
Phase 2 Checklist
- Intent classifier implemented
- Diff generator implemented
- Search integration complete
- Graph integration complete
- Site structure analysis working
Phase 3 Checklist
- Action generator implemented
- Preview formatter implemented
- Recommendations integrated
- Schema detector implemented
Phase 4 Checklist
- Approval workflow created
- State machine implemented
- Event system working
Phase 5 Checklist
- All modules integrated
- End-to-end flows working
Phase 6 Checklist
- All module tests passing
- Integration tests passing
- Performance benchmarks met
Phase 7 Checklist
- API documentation complete
- User guide written
- Architecture diagrams created
12. NEXT ACTIONS
Immediate (Next 10 minutes)
- Initialize swarm with mesh topology
- Spawn 4 agents for Phase 1
- Distribute task specifications to agents
- Setup memory namespaces for coordination
Short-term (Next 2 hours)
- Agents begin SPARC specification phase
- Monitor progress via hooks
- Resolve any blockers
- Begin Phase 1 parallel execution
Medium-term (Next 24 hours)
- Complete Phase 1 (Foundation)
- Begin Phase 2 (Specialization)
- First milestone review
APPENDIX A: State Transition Table
| From State | To State | Condition | Action |
|---|---|---|---|
| DRAFT | PREVIEW | User requests preview | Generate preview |
| PREVIEW | APPROVED | User approves | Take snapshot |
| PREVIEW | REJECTED | User rejects | Return to draft |
| PREVIEW | DRAFT | User edits | Regenerate actions |
| APPROVED | EXECUTING | Execute command | Begin execution |
| EXECUTING | COMPLETE | All actions succeed | Cleanup |
| EXECUTING | FAILED | Any action fails | Log error |
| FAILED | ROLLED_BACK | Rollback requested | Restore snapshot |
| FAILED | DRAFT | User fixes issue | Allow retry |
| ROLLED_BACK | DRAFT | Ready to retry | Clear error state |
APPENDIX B: File Structure
ai-agent-simple/
├── task-planner.js # Phase 1, A1
│ ├── IntentClassifier # Phase 2, A5
│ ├── ActionGenerator # Phase 3, A10
│ └── DependencyResolver
├── change-preview.js # Phase 1, A2
│ ├── DiffGenerator # Phase 2, A6
│ └── PreviewFormatter # Phase 3, A11
├── ruvector-bridge.js # Phase 1, A3
│ ├── SearchAdapter # Phase 2, A7
│ ├── GraphAdapter # Phase 2, A8
│ └── RecommendationEngine # Phase 3, A12
├── site-context.js # Phase 1, A4
│ ├── SiteAnalyzer # Phase 2, A9
│ └── SchemaDetector # Phase 3, A13
├── approval-workflow.js # Phase 4, A14
│ └── WorkflowStateMachine # Phase 4, A15
├── index.js # Phase 5, A16 (integration)
└── tests/
├── task-planner.test.js # Phase 6, A17
├── change-preview.test.js # Phase 6, A18
├── ruvector-bridge.test.js # Phase 6, A19
├── site-context.test.js # Phase 6, A20
└── approval-workflow.test.js # Phase 6, A21
END OF GOAP EXECUTION PLAN
This plan provides a complete roadmap from current state to goal state using optimal pathfinding. The plan is ready for execution by the swarm coordinator.